Developmental Anatomy (Ch. 4)
Human Anatomy lecture

I. Overview: Table 4.1
A. Terminology
 - **gestation** - period from conception (fertilization) to **parturition**
 - *childbirth* ❖
 - **conceptus** = all the stages of development and products of fertilization
 - clinically gestation is divided into three 3-month intervals called **trimesters**
 - biologically, divided into 3 different stages:

 - **sketch**
 - ovarian cycle begins fertilization preembryonic embryonic fetal
 - sprout

B. Fertilization
 - occurs in uterine tube
 - sperm viable for 48 hours
 + oocyte viable for 24 hours
 - = 3 day “window” for fertilization
 - sperm + ovum = **zygote**

II. Preembryonic stage (zygote ➔ ~ day 16)
A. **cleavage** (mitosis of zygote) begins within 30 hours – **KNOW Fig 4.2**
 1. 2 cells ➔ 4 ➔ 8 ➔ 16
 - result is a solid ball of cells (each is a blastomere) called the **morula** by third day
 - sprout ➔ part
 2. peristalsis and ciliary action move morula through uterine tube into
 uterine cavity by day 4
 3. By 5th day, morula has become a hollow ball of cells, the blastocyst (Fig. 4.3a)
 - **embryoblast** (inner cell mass) - becomes embryo “bag” ➔
 - **trophoblast** – shell; becomes placenta & membranes
 - **blastocoel** – fluid-filled cavity

 - **sketch**
B. implantation – begins ~ 6th day (Fig. 4.3b & c)
- blastocyst attaches and embeds into uterine wall
 - trophoblast secretes enzymes that digest endometrium
- digested cells and endometrial glands provide nutrition until placenta
devlops
- takes about a week, endometrium completely covers conceptus

C. embryogenesis (Fig. 4.3 & 4.4)
- blastomeres multiply, rearrange, differentiate
 - gastrulation forms 3 primary germ layers ~ day 15 & 16
 -- Table 4.2 details fate of primary germ layers: NRF, but
 1. ectoderm - nervous tissue and epidermis
 2. mesoderm - muscle, connective tissue, blood
 3. endoderm - lining of GI, respiratory, urinary organs

III. Embryonic stage (day 17→ end of 8th week)
A. further cell movements & complex foldings begin shaping body (Fig. 4.5)
 - organs begin forming
 - by the end of the 8th week, most organs systems have been formed
 - embryo measures ~ 3cm; weighs 1g

B. Embryonic membranes -- KNOW FIG. 4.8b
 - protect/nourish the embryo/fetus
 - considered accessory organs
 1. amnion – “bag of waters”
 - thin transparent sac, surrounds embryo with a fluid-filled cavity
 amniotic fluid聧吸 absorbs shock, buoyant support
 2. yolk sac
 - small, rudimentary in humans
 - site of early blood cell formation, primitive germ cells
 3. allantois
 - small outpocketing of hindgut (originally from yolk sac)
 - site of early blood cell formation
 - contributes blood vessels to umbilical cord
 4. chorion
 - outermost membrane, surrounding others and embryo
 - derived from trophoblast
 - becomes placenta

C. Placenta and umbilical cord -- Fig. 4.8c
“flat cake”
 1. placenta is a combination of fetal & maternal tissue (Review fetal circ. notes)
 - chorionic villi - grow into endometrium
 - decidua - modified endometrium
 “falling off”
 - surrounding endometrial capillaries enlarge forming sinuses called
 intervillous spaces, collectively the placental sinus
* NO MIXING OF BLOOD*
 - exchange of nutrients/ wastes is by diffusion across capillary walls
 - multiple other functions (Table 4.3, NRF details)

2. Placentation takes 3 months to complete
 -- at end of embryonic period is responsible for ~50% of nutrition/waste removal (Fig. 4.9)
3. umbilical cord
 - 2 umbilical arteries and 1 umbilical vein and c.t.(stem cells)
 - transports blood to/ from placenta/ fetus

IV. Fetal stage (Table 4.4, NRF)
 A. organs continue to grow and develop: at 3 months, fetus is 9 cm; 45g
 B. by the end of the 7th month, enough surfactant is in the lungs to enhance survival of prematures
 C. most weight and size gain is in the last 2 months

V. Maternal anatomical changes
 A. Uterus
 - 10x - 15x increase in weight -- hyperplasia and hypertrophy
 - fills abdominopelvic cavity → striae = stretch marks

 RESULTS: Compression
 - bladder
 - inferior vena cava ↓ venous return → varicose veins
 - GI tract - heartburn and constipation
 - thoracic cavity – difficult breathing

 B. Other organs
 - vagina -- ↑2x
 - breasts --↑2x
 - increase skin pigmentation (hormonal)
 linea alba becomes linea nigra
 - average weight gain ~ 25-35 lbs

 C. puerperium - post-delivery recovery ~ 6 weeks
 - during puerperium, uterus undergoes involution → reduction to non-pregnant size
 900 g → 60 g
 - obstetrics - branch of medicine dealing with all of above
 "midwife"
VI. Mammary glands

A. General structure of the breast – KNOW Fig. 26.21a & c
 1. modified sweat glands surrounded by adipose & c.t. tissue within superficial fascia
 2. levels of organization

 mammary gland – secretory portion of breast, including ducts
 ↓
 lobe (15-20)
 ↓
 lobule (many)
 ↓
 acinus (many) = secretory unit ⇒ Fig. 26.21d
 ⇐ “berry”

 3. single nipple surrounded by pigmented areola ⇒ rough due to modified sebaceous glands
 4. suspensory ligaments - run between lobes from deep fascia to dermis for support

B. Path of milk flow
 - suckling stimulates contraction of myoepithelial cells within acinus

 acinus
 ↓
 ↓
 lactiferous duct (1 per lobe)
 ↓
 lactiferous sinus
 ↓
 opens to the surface
 at nipple
SKETCHES

I. A.

II. A. 3.

V. Maternal changes