I. Overview
 → Illustrates trade-off between mobility vs. strength

 → Body’s largest, most complex joint
 - actually 3 joints-in-one -- 2 modified hinge & 1 planar
 - 3 bones
 - 10 ligaments
 - 13 bursae
 - 2 discs
 KNOW Fig. 9.23a, b, c, d

II. Bones and cartilage
A. Femur and tibia
 1. ends are enlarged & covered with articular cartilage
 ↓ ↓
 increases articular surface reduces friction, absorbs shock
 2. femoral condyles - very convex
 3. tibial condyles - slightly concave
B. Patella
 1. largest sesamoid bone
 2. posteriorly covered with articular cartilage
 3. forms planar joint with the femur
 4. Functions
 -- reduces wear on quadriceps tendon
 -- keeps tendon centered
 -- protects main joint
 -- increase leverage of quadriceps?
C. Fibula
 - not directly involved in joint, but site of c.t. attachment
 - lateral
D. Articular discs (menisci)
 1. wedge-shaped crescents of fibrocartilage
 ↓
 “semilunar” cartilage
 2. anchored only at ends, so mobile
 3. Functions?
 - improve “fit” of femur
 - absorb shock
 - spread synovial fluid
III. Ligaments and tendons
- no true fibrous capsule
A. Anteriorly
 - tendon of quadriceps femoris
 -- medial patellar retinaculum
 -- lateral patellar retinaculum
 \[\downarrow\] (prevent lateral/medial dislocation patella)
patella embedded
 \[\downarrow\] -- patellar ligament
attached to tibial tuberosity
B. Laterally
 1. tibial (medial) collateral ligament -- prevents abduction
 2. fibular (lateral) collateral ligament -- prevents adduction
 3. tendons of “hamstrings” also stabilize laterally
 -- insert sketch, lateral view

- In extension, both collaterals are taut
- this prevents you from hyperextension and from falling forward
 at the knee, with minimal muscular effort
C. Posteriorly
 2 membranous ligaments
 – insert sketch

 ➔ “knee-pit”
 - oblique popliteal ligament
 - arcuate popliteal ligament
 - hamstrings, popliteus and gastrocnemius muscles also help

 ➔ All help prevent hyperextension

D. Internally (intracapsular ligaments)
 1. named after attachment on tibia
 2. “cruciate” = “cross”
 anterior cruciate ligament - attached anteriorly, medially on tibia
 - prevents anterior gliding of tibia
 posterior cruciate ligament - more posterior and laterally
 - prevents posterior gliding of tibia
 3. Functions
 - hold bones together (always taut)
 - prevent tibia from sliding on the femur, both anterior/posterior & side-to-side

IV. Bursae and fat pads
A. Bursae - 13
 -- c.t. sacs lined with synovial membrane
 -- small amount of synovial fluid
 -- may communicate with the joint cavity
 -- reduce friction
 prepatellar bursa - patella/skin
 suprapatellar bursa - femur/quadriceps muscle
 infrapatellar bursa (superficial & deep) - tibia/patellar ligament

B. Tendon sheaths (Fig. 9.5)
 - tubular bursae around tendons
 - none at knee, but common at wrist & ankle, shoulder
 - contribute to carpal tunnel syndrome

C. Infrapatellar fat pad
 - additional cushion
 - one of several
V. Synovial cavity and membrane
 -- extensive and complex potential space: 1ml fluid
 -- injury → increase synovial fluid production = “water on the knee”

VI. Clinical applications
 A. Knee is most commonly injured joint
 -- long levers
 -- no socket
 B. Most common injury is lateral blow: “3 C’s” or “Unhappy Triad”
 - collateral - medial
 - cruciate - ACL
 - cartilage – medial meniscus (attached to medial collateral)
 C. Severe injuries can be repaired by arthroplasty – Fig. 9.28

SKETCHES

III. C

Lateral view - knee in extension

Oblique popliteal

Arcuate popliteal