MUSCULAR SYSTEM (more than just a tissue) – Ch. 10
Human Anatomy lecture

I. Overview
 A. 3 types of muscle tissue -

 Review tissue notes

 B. Functions
 1. Movement
 2. Stability
 3.
 4.

 C. Properties
 1. excitability & conductivity
 →
 →
 2. contractility
 →
 →
 3. extensibility
 →
 4. elasticity
 →

II. Skeletal muscle (as an organ)
 A. Connective tissue components Fig 10.2
 -- listed from most superficial to deep --
 1. superficial fascia
 2. deep fascia
 3. epimysium*
 4. perimysium*
 5. endomysium

 *Extend beyond muscle to form a tendon -- dense regular c.t.
III. How skeletal muscles produce movement
 A. Terminology \(\Rightarrow\) KNOW Fig. 10.3
 - origin --
 - belly
 - insertion --

 B. Fascicle arrangement (relative to tendon)
 - influences power and range of motion (Fig. 10.3)
 Ex.:

 C. Group actions
 1. prime mover -
 (agonist) - ex.:

 2. antagonist -
 - ex.:

 3. synergists -
 - ex.:

 4. fixators -
 -- ex.:

 D. Lever systems
 1. Terminology
 -- Insert Drawing --

 2. In your body: muscles =
 joints =
 body weight =
 bones =

Muscle -- Page 2 of 5
3. Relative position of the three determine:
 - mechanical advantage:
 or
 - mechanical disadvantage:
 (or a mechanical advantage of <1)
4. Levers trade-off effort - vs.- distance and speed

IV. Microscopic anatomy of skeletal muscle: Fig 10.2 & 10.8
 A. Cell = muscle fiber = myofiber
 Drawing:---

B. Sarcomere – structural and functional unit of a muscle cell: Fig. 10.10
 “flesh”  “part”
 Be able to sketch and label a sarcomere:
1. three major protein myofilaments (= microfilaments → part of cytoskeleton)
 - thick
 - thin
 - elastic

2. form alternating light and dark bands = striations
 - dark A band =
 - light I band (gap between thick filaments) =

3. muscle contracts by sliding-filament mechanism
 - NRF detail

C. Muscle cell also has specialized ER, the
D. Sarcolemma has deep invaginations, the

V. Nerve and blood supply to skeletal muscle
 A. skeletal muscles contract voluntarily

 B. a motor neuron branches at its end to innervate 3-2000 muscle cells (avg. ≈150).

 C. muscle tone is minimal contraction maintained by alternating activity among different motor units.

 D. neurovascular bundle supplies the muscle with:

VI. Growth and regeneration of skeletal muscle
 1. skeletal muscle cells can not divide
 - hypertrophy
 - atrophy
 2. if damaged, some new cells can form from satellite cells

VII. Cardiac muscle
 A. Microscopic anatomy (Fig. 10.16, but 20.14, p. 553 is better)
 1. Similar to skeletal:
 -
 -
 2. Cells are shorter, branched, and connected end-to-end
3. Intercalated discs contain
 - gap junctions.
 -

RESULT → heart is a single structural & functional unit!

B. Nerve and blood supply
 1.
 2.
 3. involuntary contraction
 --

C. Growth and regeneration
 1. growth by adding myofibrils
 2. some regeneration (unknown source of stem cells), though most repair is by fibrosis

VIII. Smooth muscle
A. Microscopic anatomy (Fig. 10.16b & .18)
 1. no myofibrils or sarcomeres
 2. actin and myosin and intermediate filaments arranged in contractile network
 3. cells arranged in two ways
 a. single-unit (visceral) smooth muscle
 -
 -
 -
 b. multi-unit smooth muscle
 -
 -
 -

B. Nerve and blood supply
 1.
 2.
 3.
 --

C. Growth and regeneration
 1. hypertrophy is possible; some cells can still divide:
 2. new cells can arise from pericytes --

-- Table 10.4 excellent summary/comparison of muscle types --
(NRF all details – see review worksheet)