Respiratory System (Ch. 23)
Human Anatomy lecture

I. Overview
A. Functions with cardiovascular system (= cardiopulmonary system)
 ① Deliver O₂ to blood
 ② Remove CO₂ from blood
 Also
 - Modifies air, delivers smells, produces sounds
 - other physiological functions

B. Functionally 2 divisions
 1. Conducting division: nose → lungs
 2. Respiratory division: site of gas exchange in alveoli (& some other distal portions)

C. Anatomically divided differently
 1. Upper respiratory tract: nose and pharynx (NOTE your text divides below larynx)
 2. Lower respiratory tract: everything else

II. Upper respiratory tract (KNOW Fig. 23.2)
A. Nose
 Nasal cavity divided by nasal septum into Left & Right nasal fossae

 External nose
 → formed by bone (nasal & maxilla) + hyaline
 L. & R. naris (pl. = nares) cartilage (9+ plates)
 ↓
 L. & R. vestibule → lined with stratified squamous epi.
 ↓

 Internal nose
 3 prs meatuses formed by 3 prs conchae (turbinates)
 mucous membrane with
 ↓
 pseudostrat. ciliated col. epi
 except patch on superior meatus:
 olfactory epithelium.
 L & R posterior nasal apertures → at end of hard palate
 (choanae)
 ↓
 pharynx

 • Why conchae? → increase surface area to clean, warm & moisten air
 • L & R inferior conchae have erectile tissue (swell body) → alternately engorged
B. Pharynx (= throat)

1. Funnel-shaped passage (parts common to both food and air) - posterior to nasal and oral cavities

2. 3 Divisions (Fig. 23.2c)

 - **nasopharynx**
 - posterior nares (end of hard palate) →
 - uvula (end of soft palate) →
 - pseudostratified ciliated col. epithelium

 - **oropharynx**
 - uvula (end of soft palate) → tip of epiglottis
 - stratified squamous epithelium

 - **laryngopharynx**
 - tip of epiglottis → cricoid cartilage
 - stratified squamous epithelium

 - oral cavity → fauces → lingual & palatine tonsils

III. Lower respiratory tract

A. Larynx (voice box) → **KNOW** Fig. 23.4 (partially)

1. Short passageway anterior to C₄-C₆

2. 9 cartilages, several ligaments and muscles
 - 1 epiglottis - leaf-shaped, superior
 - 2 thyroid (Adam’s apple) – shield-shaped, anterior
 - 3 cricoid – ring-shaped, inferior → only complete ring in respiratory tract
 + 3 small pairs posteriorly and laterally

3. Mucosa forms 2 pairs of folds (Fig. 23.5)
 - vestibular folds (false vocal cords) – superior
 - vocal cords (vocal folds) – inferior
 - glottis – vocal cords and space between them

4. Lined w/stratified squamous epi. (superiorly); pseudostratified ciliated col. epi. (inferiorly)

5. When you swallow:
 - larynx elevates,
 - epiglottis hinges “down,”
 - vestibular folds close glottis
 - avoids “breathing” food
B. Trachea (windpipe) → **KNOW Fig. 23.7a**
1. Anterior to esophagus, C6-T5
2. Tubular passage of 16-20 stacked C-shaped cartilaginous rings
3. Lined w/pseudostratified ciliated col. epi.
 - abundant goblet cells & glands → mucus
 → result is a mucociliary escalator
4. Trachealis muscle (smooth) and elastic c.t. hold ends of “C” together
5. Outer layer is an adventitia

Why cartilage? Why C-shaped and not complete rings?
• maintains patency (openness) of tube
• allows expansion of esophagus
• allows adjustment of diameter and thus airflow

C. Bronchial tree (Fig. 23.7a)
1. System of branching tube/tubules (your text doesn’t include trachea)

 - trachea
 ↓
 L + R main bronchi – enter lungs
 ↓
 Lobar bronchi – one for each lobe of lung
 ↓
 Segmental bronchi – 10/lung?, supply bronchopulmonary segments
 ↓
 bronchioles – no cartilage, <1mm diameter
 ↓
 ↓
 ↓
 terminal bronchioles

2. As move “down” tree:
 diameter ↓
cartilage ↓
 smooth muscle ↑
 epithelium changes to non-ciliated simple cuboidal

3. Nicotine paralyzes cilia
 constricts smooth muscle, ↓ diameter of terminal bronchioles
 ↑ mucus production
D. Lungs

1. Surrounded by pleural membrane (Fig. 1.13 & 23.12)
 -insert sketch-
 -parietal pleura
 -pleural cavity
 -serous fluid
 -visceral pleura

 Functions?
 ① reduce friction
 ② create pressure gradient
 ③ compartmentalize (decreased chance of infection)

2. Gross anatomy **KNOW Fig. 23.9**
 - apex & base
 - costal & mediastinal surfaces
 - hilum – indented region
 - root = bronchus & neurovascular bundle
 - lobes and fissures
 - cardiac impression

3. Each lobe divided by inward extensions of visceral pleura into bronchopulmonary segments (see chap. opening art, p. 631)

4. Each bronchopulmonary segment subdivided into pulmonary lobules (2-15 mm), supplied by a bronchiole, which gives off 50-80 terminal bronchioles (<0.5 mm).

5. Within a pulmonary lobule: **(KNOW Fig. 23.11)**
 - bronchiole
 - terminal bronchiole → simple + smooth
 - cuboidal muscle
 - respiratory bronchiole → “low” scanty smooth
 - cuboidal muscle
 - alveolar duct
 - alveolus alveolar sacs simple squamous epi.
6. Lots of elastic fibers in c.t. surrounding all these and in walls of tubes

7. Lung receives double blood supply

 (deoxygenated) pulmonary A. \[\rightarrow\] pulmonary V. (deoxygenated)
 (oxygenated) pulmonary V. \[\leftarrow\] bronchial AA. (shunt)
 bronchial AA. \[\rightarrow\] azygos system

E. Alveolus
1. Designed to maximize O_2/CO_2 exchange:
 - 300 million, 0.3mm diameter
 - 70m2 total surface area (~= handball court)

2. Histology (Fig. 23.11)
 ① squamous (type I) alveolar cells
 -95% of alveolus surface area
 -site of gas exchange
 ② great (type II) alveolar cells → outnumber type I
 -microvilli
 -secrete surfactant → prevents collapse
 -repair alveolar wall
 ③ Alveolar macrophages (dust cells) [WBC]
 - wander around
 - 100 million/day ride the escalator giving their lives for your health!

3. Alveolus jacketed by dense capillary network
 - gases must diffuse across respiratory membrane (Fig. 23.11c)
 - 6 layers (more than your text implies)
 ① surfactant
 ② squamous cell
 ③ squamous cell basement membrane
 ④ interstitial space
 ⑤ capillary basement membrane
 ⑥ capillary endothelial cell

4. Vital to prevent accumulation of fluid in lungs – How?
 - extensive lymphatic drainage
IV. Functional anatomy of breathing (Fig. 23.13)

A. Basic physics

\[
\begin{align*}
\uparrow \text{volume} &= \downarrow \text{pressure} \\
\downarrow \text{volume} &= \uparrow \text{pressure}
\end{align*}
\]

How do you accomplish this change in thoracic volume?

B. Normal inspiration

1. Diaphragm – ~ 2/3

\[\text{diaphragm relaxed between breaths} \rightarrow \text{diaphragm contracted during inspiration}\]

-- Increases vertical dimension of thorax 1 \(\rightarrow\) 7 cm

2. Ribs - ~ 1/3

\[\text{External intercostals contract} \quad \text{At rest, ribs angle } \rightarrow \text{Inspire: ribs angle } \rightarrow \text{“Bucket handle”}\]

Increases anterior-posterior (AP) and transverse dimensions

C. Forced inspiration uses additional accessory muscles of inspiration.

D. Normal expiration is a passive process

1. diaphragm and external intercostals relax
2. elastic c.t. returns lungs to original dimensions

E. Forceful expiration

-- internal intercostals contract: lower ribs more and quickly
-- abdominal muscles contract: raise diaphragm more & quickly

Respiratory -- Page 6 of 6